Moon Hwan Lee

CONTACT INFORMATION

Integrated Ph.D Candidate

Dept. Electrical Engineering and Computer Science (EECS)

Daegu Gyeongbuk Institute of Science and Technology (DGIST)

Email: moon2019@dgist.ac.kr

Personal website: mooncv.wixsite.com/moonhwan

RESEARCH INTERESTS Biomedical ultrasound Acoustic hologram

System development

Deep learning applications

EDUCATION

Integrated Ph.D in Dept. EECS

• DGIST, Daegu, Korea Mar. 2019 – present

· Advisor: Prof. Jae Youn Hwang

B.S. in Electronic Engineering

* Kyungpook National University, Daegu, Korea Mar. 2015-Feb. 2019

EXPERIENCES

Researcher

• DGIST, Daegu, Korea (alternative military service) Dec. 2021 – Dec. 2024

Lab manager

· MBIS Lab (Prof. Jae Youn Hwang), DGIST Mar. 2022 – present

REFEREED
PUBLICATIOINS
(1st: 7,

co-author: 8) (Domestic

journal: 2) (*Co-first

author)

15) K. Lee, H. Lee, M.H. Lee, S. Kim, Y. Eun, Y. Eun, J.Y. Hwang, "Expert-Level Differentiation of Incomplete Kawasaki Disease and Pneumonia from Echocardiography via Multiple Large Receptive Attention Mechanisms", Computers in biology and medicine, 2025.

- 14) M.H. Lee, K. Lee, Y. Yoo, E. Chung, H. Cho and J.Y. Hwang, "Machine Learning-Enhanced Skull-Universal Acoustic Hologram for Efficient Transcranial Ultrasound Neuromodulation Across Varied Rodent Skulls", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024.
- 13) K. Lee*, H. Lee*, M.H.Lee, J.H. Chang, C.-C. J. Kuo, SJ Oh, J. Woo, and J.Y. Hwang, "Multi-Scale Self-Attention Network for Denoising Medical Images", APSIPA Transactions on Signal and Information Processing, 2024.
- 12) K. Lee*, M.H. Lee*, D. Kang, S. Kim, J.H. Chang, SJ Oh, J. Y. Hwang, "Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices: Enhancing Accuracy through Deep Learning-based Coarse-to-Fine Shape Estimation", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024. [contributed equally]
- 11) M.H. Lee, HY Park, K. Lee, S. Kim, J. Kim, J.Y. Hwang*, "Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications", The Journal of the Acoustical Society of Korea, 2023.
- 10) M.H. Lee, H.M. Lew, S. Yoon, T. Kim, J.Y. Hwang, "Deep learning-based framework for fast and accurate acoustic hologram generation", IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, 2022. [Featured on the front cover]

- 9) K. Lee, H.M. Lew, M.H. Lee, Jun-Young Kim, J.Y. Hwang, "CSS-Net: Classification and Substitution for Segmentation of Rotator Cuff Tear", In Asian Conference on Computer Vision (ACCV), 2022.
- 8) H. Kim, S. Youn, J. Kim, S. Park, M.H. Lee, J.Y. Hwang, J.H. Chang, "Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles", Nature Photonics, 2022. [Featured on the front cover]
- 7) K. Lee*, J. Yang*, M.H. Lee, J.H. Chang, J. Kim, J.Y. Hwang, "USG-Net: Deep Learning-based Ultrasound Scanning-Guide for an Orthopedic Sonographer", In International Conference on Medical image computing and computer-assisted intervention (MICCAI), 2022.
- 6) H. Lee*, M.H. Lee*, S. Yoon, K. Lee, H.M. Lew, J.Y. Hwang, "Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image" IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022. [contributed equally]
- 5) M. Park, G.H. Hoang, T. Nguyen, E. Lee, H.J. Jung, Y. Choe, M.H. Lee, J.Y. Hwang, J.G. Kim, T. Kim, "Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5× FAD mice", Translational neurodegeneration, 2021.
- 4) H.M. Lew, H. Shin, M.H. Lee, S. Youn, H.C. Kim, and J.Y. Hwang, "Ultrasonic Blood Flowmeter with a Novel Xero Algorithm for a Mechanical Circulatory Support System", Ultrasonics, 2021.
- 3) M.H. Lee and J.Y. Hwang, "Development of deep learning-based holographic ultrasound generation algorithm (Deep-HUG)", The Journal of the Acoustical Society of Korea, 41(2), 2021.
- 2) K. Lee*, J. Kim*, M.H. Lee, C. Choi, and J.Y. Hwang, "Imbalanced Loss-Integrated Deep-Learning-Based Ultrasound Image Analysis for Diagnosis of Rotator-Cuff Tear", Sensors, 2021.
- 1) M.H. Lee*, J. Kim*, K. Lee, C. Choi, and J.Y. Hwang, Wide-field 3D Ultrasound Imaging Platform with a Semi-automatic 3D Segmentation Algorithm for Quantitative Analysis of Rotator Cuff Tears, IEEE ACCESS, 2020. [contributed equally]

NON-REFEREED
PUBLICATIONS
&

CONFERENCES (1st: 7,

co-author: 3) (*Co-first

author)

12) **M.H. Lee**, H.M. Lew, J.S. Kim, J. Park, S. Youn, J. Kim, and J.Y. Hwang, "Deep Learning-Based Fundamental Frequency Conversion for a Mechanically Rotating Dual-Element Ultrasound Endoscopic Probe", In the UFFC-Joint Symposium (poster presentation), 2024.

- 11) M.H. Lee, and J.Y. Hwang, "Thickness-Only Acoustic Hologram for Precise Ultrasound Neuromodulation and its Validation via transcranial acoustic field measurement through a mice skull ex vivo", In the UFFC-Joint Symposium (lecture presentation), 2024.
- 10) K. Lee, M.H. Lee, J.Y. Hwang, "ViT-SPI: Vision Transformer with Volumetric Spatial Information for Precis Bladder Volume Measurement", In the IEEE International Ultrasonic Symposium (lecture presentation), 2023.
- 9) M.H. Lee, Y. Yoo, E. Chung, H. Cho, J.Y. Hwang, "Transcranial Acoustic Hologram Design with Machine Learning: A Universal Solution for All Skulls", In the IEEE International Ultrasonic Symposium (poster presentation), 2023.
- 8) M.H. Lee, Y. Yoo, E. Chung, H. Cho, J.Y. Hwang, "The way to deep learning (DL)-based fast transcranial acoustic hologram generation for flexible neuromodulation", In the

Annual International Symposium on Therapeutic Ultrasound held by International Society for Therapeutic Ultrasound, 2023.

- 7) H. Lee, M.H. Lee, Lucy Y. Eun, Y. Eun, J.Y. Hwang, "Diagnosis of Incomplete Kawasaki Disease using Deep Learning Techniques with Ultrasound Images of Coronary Artery Lesions", In International Congress on Acoustics, 2022.
- 6) M.H. Lee, H.M. Lew, S. Youn, J.Y. Hwang, "Neural Network-based Acoustic Hologram Generation for Fast and Precise Neuromodulation", In IEEE International Ultrasonic Symposium (poster presentation), 2022.
- 5) M.H. Lee, H.M. Lew, J.S. Kim, S. Youn, J.Y. Hwang, "Monitoring of spatially selective calcium response to holographic ultrasound stimulation using fluorescence imaging", In SPIE Photonics West (poster presentation), 2022.
- 4) H.M. Lew, M.H. Lee, S. Youn, H.C, Kim and J.Y. Hwang, *Ultrasonic Blood Flow Meter using an Advanced Zero-crossing Technique for Measuring Blood Flow Rates of an Extracorporeal Membrane Oxygenation Device*, The Korean Society of Medical & Biomedical Engineering (lecture presentation), 2021. (Best paper award)
- 3) J.S.Kim, S.Youn, M.H. Lee, H.M. Lew, and J.Y. Hwang, *Ultrafast Detection-based Acoustic Trapping Technique for Measurement of Viscoelasticity of a Single Cell*, The Acoustical Society of Korea (poster presentation), 2021. (Best presentation award)
- 2) M.H. Lee, S. Youn, and J.Y. Hwang, *Development of a multimodal necklace for continuous monitoring of cardiopulmonary functions*, In SPIE Photonics West (poster presentation), 2021.
- 1) M.H. Lee, H.M. Lew, and J.Y. Hwang, *Intelligent Wearable Bladder Monitoring Device with an Inertial Measurement Unit for Robust Measurement of Bladder Volume*, In the IEEE International Ultrasonic Symposium (poster presentation), 2020.

PATENT

- 12) J.Y. Hwang, M.H. Lee, "CELL CULTURE PLATE APPARATUS USING ULTRASONIC HOLOGRAM" (Application (KR), 10-2024-0066916, 2024.05.23)
- 11) J.Y. Hwang, M.H. Lee, "Ultrasound imaging device for endoscope mounting" (Application (KR), 10-2024-001309, 2024.01.30)
- 10) J.Y. Hwang, M.H. Lee, "APPARATUS AND ULTRASONIC STIMULATION AND METHOD FOR OPERATION FOR THE SAME" (Application (KR), 10-2023-0132379, 2023.10.05)
- 9) J.Y. Hwang, H. Kwon, D. Kim, M.H. Lee, "Brain ultrasonic stimulation and visual monitoring system" (Application, PCT-KR2023-001888, 2023.02.09)
- 8) J.Y. Hwang, M.H. Lee, "CELL STIMULATION AND CULTURE PLATFORM USING ULTRASONIC HOLOGRAM" (Application (US), 17-960999, 2022.10.06 / Granted, 10-2579381, 2023.09.12)
- 7) J.Y. Hwang, M.H. Lee, H.M. Lew, "Bladder monitoring apparatus and method for controlling bladder monitoring apparatus" (Application (US), US20220133259A1, 2022.05.05)
- 6) J.Y. Hwang, H. Kwon, D. Kim, M.H. Lee, "Brain ultrasonic stimulation and visual monitoring system" (Application, 10-2022-0017344, 2022.02.10 / <u>Granted</u>, 10-2716510, 2024.10.08)
- 5) J.Y. Hwang, M.H. Lee, "CELL CULTURE AND STIMULATION PLATFROM BASED ON ULTRASOUND HOLOGRAM" (Application (KR), 10-2021-0132152, 2021.10.06 / Granted, 10-2579381, 2023.09.12)

- 4) J.Y. Hwang, M.H. Lee, et al. "SMART HIP JOINT IMPLANT WITH LINEAR WEAR MONITORING" (Application (KR), 10-2021-0092344, 2021.07.14)
- 3) J.Y. Hwang, C.Y. You, M.H. Lee, "Hollow cylindrical ultrasound imaging system for analyzing body composition and operation method of the ultrasound imaging system" (Application (US), US20220071598A1. 2022.03.10 / Granted, US11717267B2, 2023.08.08)
 2) J.Y. Hwang, M.H. Lee, H.M. Lew, "BLADDER MONITORING APPARATUS AND METHOD FOR CONTROLLING BLADDER MONITORING APPARATUS" (Application (KR), 10-0145463.
- 1) J.Y. Hwang, C.Y. You, M.H. Lee, "ULTRASOUND IMAGE SYSTEM AND METHOD FOR OPERATING OF ULTRASOUND IMAGE SYSTEM FOR ANALYZING BODY COMPOSITION" (Application (KR), 10-0113043. 2020.09.04)

FUNDED RESEARCH EXPERIENCES

- Development of Snapshot Multispectral/Holographic Ultrasound Endoscopic Imaging Platform for Three-Dimensional Unlabeled Detection of Gastrointestinal Cancer (NRF, Korea)
 - Objective:
 - Development of multimodal endoscopic probe (snapshot multispectral
 + holographic ultrasound) for 3D unlabeled detection of GI cancer
 - · What I did/am doing:

2020.11.03 / **Granted**, 10-2460829, 2022.10.26)

- Participated in the research grant proposal
- Development of holographic ultrasound imaging algorithm inspired by structured illumination ultrasound imaging
- Design of endoscope probe integrating two different modalities
- Custom connector and cables for 1D linear array inserted into the endoscope probe
- 8) Development of SoC for Multi-Channel Ultrasound Catheters and a Probe for Intracardiac Echocardiography Using It (MOTIE, Korea)
 - Objective:
 - Development of 3D ICE imaging system with low channel count by adopting a row-column-addressed array that integrated to ultrasound pulser-receiver ASIC
 - · What I did/am doing:
 - Participated in the research grant proposal
 - Simulation of custom row-column-addressed array designs to find proper designs
 - Implementation of convex lens-based larger FoV RCA imaging solution
- 7) Development of acupoint stimulation core technology of Korean Medicine and ICT convergence for the treatment of chronic pain and comorbidities (NRF, Korea)

Objective:

Development of non-invasive acupoint stimulation method exploiting ultrasound, especially acoustic hologram

2024

2024

2023

2024

·	ΛI	hat I	_	
- X.Z. 1	vv	เเลเ	·	ш

- Participated in the research grant proposal
- Design of a programmable single-channel ultrasound stimulator
- Development of optimization-based acoustic hologram design for desired phase- or amplitude-field generation
- 6) Intractable Pain Treatment based on a Novel Gliopathic Paradigm from Bench to Market (MSIT, Korea)

· Objective:

2021

- Development of non-invasive brain stimulation method exploiting ultrasound, especially acoustic hologram for pain reduction

2024

· What I did:

- Participated in the research grant proposal
- Development of custom connectors and cable for a 2D matrix array transducer
- Deep learning-based computer-generated hologram algorithm for the 2D array transducer
- Construct a custom acoustic intensity measurement system for measuring holographic acoustic field
- Design of the hologram lenses based on the developed algorithm
- Blood brain barrier opening experiment on mice with the designed hologram lens
- 5) Development of an elderly-friendly wearable smart healthcare system and service for real-time quantitative monitoring of urination and defecation disorders (MOTIE, Korea)

2021

Objective:

2023

- Development of wearable ultrasonic system for quantitative monitoring of urinary bladder volume

· What I did:

- Participated in the research grant proposal
- Preliminary work on IMU-assisted bladder monitoring accuracy enhancement (Implementation of IMU + LabView control program)
- Development of intelligent bladder monitoring algorithm
- 4) Development of a low-voltage driving CMUT-based ring-type ultrasound imaging sensor for a next-generation medibot (National Research Foundation, Korea)

2019

· Objective:

2021

- Development of miniaturized CMUT-based ultrasound imaging sensor

· What I did:

- Implementation of the single-element transducer-based synthetic aperture imaging algorithm for CMUT and PZT-based sensor
- Design of transimpedance amplifier circuit for CMUT linear array

sensor and its test with the CMUT array

3)	Deve	elopment of Prototype of Ultrasonic Capsule Endoscopy and	
	tes	tbench (ENDOLFIN Co., Korea)	
	•0	Objective:	2010
	-	Development of ultrasound capsule endoscopy using single element	2019
		US transducer or CMUT and its testbench	-
	•0	What I did:	2021
	-	Development of single-channel ultrasound pulser/receiver circuit for	2021,
		the ultrasonic capsule endoscope (schematic, PCB, FPGA)	2023
	-	Implementation of coded-excitation methods for the capsule	_
		endoscope	
	-	Fabricate tissue-mimicking phantom and evaluate the endoscope's	2024
		image quality	
	-	Porcine in-vivo experiment of the ultrasound capsule endoscope	
2)	Deve	elopment of ultrasound-assisted confocal microscopy for deep	
	tiss	ue imaging (Samsung Science & Technology Foundation)	2019
	•0	Objective:	
	-	Development of ultrasound-assisted confocal microscopy for deep	-
		tissue imaging (utilize ultrasound-induced bubble to see deeper)	2022
	•0	What I did:	
	-	Construct custom confocal microscopy (controller part – Configuration	
		of DAQ board, galvo resonant mirror, etc – Programmed with LabView)	
1)	Smar	t Monitoring System for Hip Implant Liner (MOTIE, Korea)	
	•	Objective:	2019
	-	Development of implantable liner thickness monitoring system based	
		on ultrasound	-
	•0	What I did:	2020
	-	Test various frequency range and excitation pulse for measuring a liner	
		thickness with high resolution	
	-	Collaborate with ASIC group (KAIST) to make micro, wireless	
		ultrasound NDT system for the liner thickness measurement	
	-	Cadaver experiment to demonstrate the efficiency	
0,	D -		3 21 - 1
	-	learning-based transcranial acoustic hologram generation for rapid and f	iexible
ne	uromo	odulation strategy (on-going)	

${f N}{f O}{f N}-{f F}{f U}{f N}{f D}{f E}{f D}$ **R**ESEARCH **E**XPEREINCES

- 7) Differentiable hologram lens-based multi-focal ultrasound neuromodulation tool and its demonstration via BBB opening and pain reduction in mice (on-going)
- 6) Differentiable physical hologram lens optimization framework for high fidelity between simulation and experiment (IUS 2024, on-going)
- 5) Dual-frequency ultrasound endoscopic imaging system and application of deep learning (IUS 2024, on-going)

- 4) Wearable blood flow/SpO2 monitoring system (SPIE Photonics West 2021)
- 3) Transit-time flow meter for ECMO (Ultrasonics, 2021)
- 2) Continuous bladder volume monitoring system (IUS 2020, IEEE T-UFFC, 2024)
- 1) 3D wide-field ultrasound imaging system based on commercial system and segmentation algorithm for the diagnosis of rotator cuff tears (IEEE ACCESS, 2020)

Professional Services

- External Journal & Conference Reviewer Experience
 - · IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
 - · IEEE Transactions on Computational Imaging
 - · Scientific Reports
 - · Applied Physics Letters
 - · SPJ Research
 - · MICCAI
 - Medical Image Analysis

SKILLS

Programming (Intermediate)

FPGA (VHDL), Python, Tensorflow, Pytorch, MATLAB, LabView

Physical Computing (Intermediate)

Zynq (Vivado, Vitis), 3D Printing, Circuit & PCB design (Altium), Soldering, Lathe, Ultrasound transducer design & fabrication (single-element transducer)

3D Graphics (Intermediate)

Fusion 360, 3Ds Max

Language

- Korean: native language
- English: fluent (worked with international students in MBIS lab)

HONORS AND AWARDS

- 2) Gliopathic Pain Research Center of Joint Research Project of Institutes of Science and Technology, "Outstanding Poster Award", 2022.
- 1) DGIST ICE Student Conference, "Best Speech Award", 2021.

Teaching /Mentoring /Outreach

■ Mentoring @ DGIST

2021 – present: Lab manager

2024 winter internship (for undergraduate student)

2024 summer internship (for undergraduate student)

■ Teaching Assistant @ DGIST

Python Programming (2020, Spring semester)